5750

Large-Scale Image Annotation using Visual Synset (ICCV 2011)

Large-Scale Image Annotation using Visual Synset (ICCV 2011)

Visual Synset 网络标签

Visual Synset 网络标签图像

免积分下载
数据集市
2018年11月26日
1.5GB

相关数据

Caltech-256 数据集
Caltech-256 数据集
Caltech-256 是一个图像物体识别数据集,包含 30... 免积分下载
猫的图片数据集
猫的图片数据集
超过9,000张带有面部标注特征的猫的图像数据集 免积分下载
CACD 跨年龄人脸识别和检索数据集
CACD 跨年龄人脸识别和检索数据集
CACD 数据集是一个用于跨年龄的人脸识别和检索的大规模数据... 免积分下载

数据介绍

We address the problem of large-scale annotation ofweb images. Our approach is based on the concept of visual synset, which is an organization of images which are visually-similar and semantically-related.

Each visual synset represents a single prototypical visual concept, and has an associated set of weighted annotations.

Linear SVM’s are utilized to predict the visual synset membership for unseen image examples, and a weighted voting rule is used to construct a ranked list of predicted annotations from a set of visual synsets. We demonstrate that visual synsets lead to better performance than standard methods on a new annotation database containing more than 200 million im-ages and 300 thousand annotations, which is the largest ever reported.

数据规格

引用 @article{TsaiICCV11,
author = {David Tsai and Yushi Jing and Yi Liu and Henry A.Rowley and Sergey Ioffe and James M.Rehg},
title = {Large-Scale Image Annotation using Visual Synset},
journal = {ICCV},
year = {2011},
}
还没有任何文件记录.