5355

联合注意自动驾驶(JAAD)数据集

JAAD_dataset

JAAD 自动驾驶

数据集包括主要用于在自主驾驶中进行行为研究和检测的行人和汽车的实例

免积分下载
数据集市
2020年09月28日
3.1GB

相关数据

Caltech-256 数据集
Caltech-256 数据集
Caltech-256 是一个图像物体识别数据集,包含 30... 免积分下载
猫的图片数据集
猫的图片数据集
超过9,000张带有面部标注特征的猫的图像数据集 免积分下载
CACD 跨年龄人脸识别和检索数据集
CACD 跨年龄人脸识别和检索数据集
CACD 数据集是一个用于跨年龄的人脸识别和检索的大规模数据... 免积分下载

数据介绍

JAAD is a dataset for studying joint attention in the context of autonomous driving. The focus is on pedestrian and driver behaviors at the point of crossing and factors that influence them. To this end, JAAD dataset provides a richly annotated collection of 346 short video clips (5-10 sec long) extracted from over 240 hours of driving footage. These videos filmed in several locations in North America and Eastern Europe represent scenes typical for everyday urban driving in various weather conditions.

Bounding boxes with occlusion tags are provided for all pedestrians making this dataset suitable for pedestrian detection. Behavior annotations specify behaviors for pedestrians that interact with or require attention of the driver. For each video there are several tags (weather, locations, etc.) and timestamped behavior labels from a fixed list (e.g. stopped, walking, looking, etc.). In addition, a list of demographic attributes is provided for each pedestrian (e.g. age, gender, direction of motion, etc.) as well as a list of visible traffic scene elements (e.g. stop sign, traffic signal, etc.) for each frame.

If you found our dataset useful in your research please consider citing our papers:

@inproceedings{rasouli2017ICCVW, title={Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior}, author={Rasouli, Amir and Kotseruba, Iuliia and Tsotsos, John K}, booktitle=, pages={206--213}, year={2017} }

@inproceedings{Rasouli2017IV, title=, author={Rasouli, Amir and Kotseruba, Iuliia and Tsotsos, John K}, booktitle={IEEE Intelligent Vehicles Symposium (IV)}, pages={264--269}, year={2017} }

还没有任何文件记录.