6332

中国传统山水画数据集

Chinese-Landscape-Painting-Dataset

图像数据集 山水画 机器艺术 国画 中国画 艺术创作

2192幅高质量中国传统山水画组成的新数据集,这些山水画来自普林斯顿艺术博物馆藏品。

免积分下载
数据集市
2020年11月30日

相关数据

Caltech-256 数据集
Caltech-256 数据集
Caltech-256 是一个图像物体识别数据集,包含 30... 免积分下载
猫的图片数据集
猫的图片数据集
超过9,000张带有面部标注特征的猫的图像数据集 免积分下载
CACD 跨年龄人脸识别和检索数据集
CACD 跨年龄人脸识别和检索数据集
CACD 数据集是一个用于跨年龄的人脸识别和检索的大规模数据... 免积分下载

数据介绍

Paper Title: "End-to-End Chinese Landscape Painting Creation Using Generative Adversarial Networks" ArXiv: https://arxiv.org/abs/2011.05552

Abstract: Current GAN-based art generation methods produce unoriginal artwork due to their dependence on conditional input. Here, we propose Sketch-And-Paint GAN (SAPGAN), the first model which generates Chinese landscape paintings from end to end, without conditional input. SAPGAN is composed of two GANs: SketchGAN for generation of edge maps, and PaintGAN for subsequent edge-to-painting translation. Our model is trained on a new dataset of traditional Chinese landscape paintings never before used for generative research. A 242-person Visual Turing Test study reveals that SAPGAN paintings are mistaken as human artwork with 55% frequency, significantly outperforming paintings from baseline GANs. Our work lays a groundwork for truly machine-original art generation.

Sketch-And-Paint GAN, compared with baseline models: Alt Text


Here, we provide the dataset used to train our Sketch-And-Paint GAN model. The dataset consists of 2,192 high-quality traditional Chinese landscape paintings (中国山水画). All paintings are sized 512x512, from the following sources:

For more details about dataset collection methodology, please see the paper.

Dataset Samples: Alt Text


Please cite the paper if you choose to use this dataset for your research.

@misc{xue2020endtoend,
      title={End-to-End Chinese Landscape Painting Creation Using Generative Adversarial Networks}, 
      author={Alice Xue},
      year={2020},
      eprint={2011.05552},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
还没有任何文件记录.